

Agenda & speakers

About GFP & the projectJos Diening
President and CEO

About the project Kaela Esseghaier Project Director

LicensingJordan Black
Licensing Director

Project updatePatrick Greer
Manager - Design Engineering

Acknowledgement and commitment to Indigenous communities

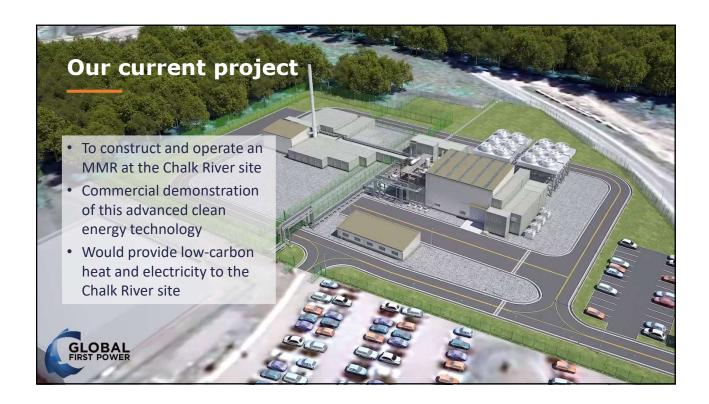
Global First Power: Who we are

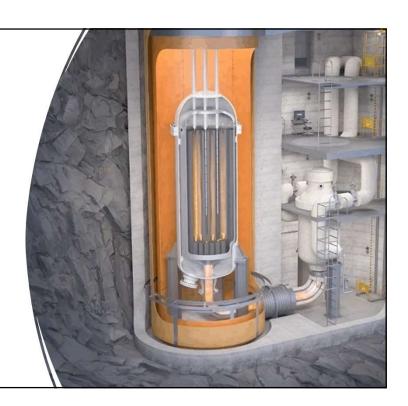
- Canadian company
- Jointly owned by Ontario Power Generation and Ultra Safe Nuclear Corporation
- · Small but dedicated team
- Based in Ontario

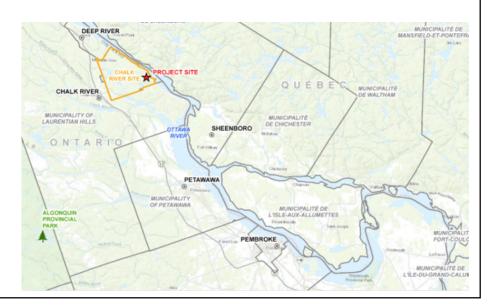
Why build an MMR?

MMRs can play a role in addressing climate change and energy access issues by:

- Helping to decarbonize remote industrial activities and energy-intensive operations like data centres
- Providing an alternative to diesel for remote communities


>>> 1 MMR could replace 1.2 B litres of diesel

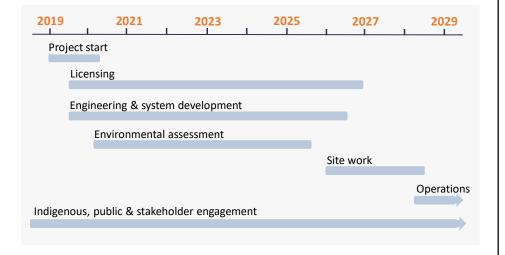

Our current project



About the MMR

- Smaller, more advanced version of traditional nuclear reactors
- Advanced, passive safety systems
- Minimal operations and maintenance requirements
- Scalable and modular can suit different site/energy needs
- Based on proven technology in use for several decades in countries like the U.S., Germany, Japan and China

Project location


Project location

The project site consists primarily of an employee parking which is bordered by an adjacent wooded area

Target project timeline

Project update

MMR design updates - overview

The inherent safety features are maintained and supported by these updates to the design

	Original design	Updated design
Output	15MW thermal 5MW electrical	45MW thermal Up to 15MW electrical
Service life	20 years	Up to 40 years
Refueling	No	Yes
Fuel assembly	Indirect cooling	Direct cooling
On-site fuel storage	No	Short-term
Core shielding	Yes	Yes Increased capability

MMR design updates - uprating

Uprating from 15 MWt to 45 MWt

- Meets broader market demand for greater electrical and heat output
- Improved economics
- Can be designed with operating capacity flexibility, depending on application requirements

MMR design updates - lifespan

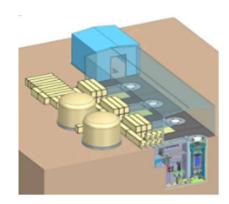
Operating life of the facility has increased from 20 to 40 years

Aligns with industry practice

Supports economics

Enabled by introducing fuel handling equipment and the ability to refuel

MMR design updates - defueling/refueling


The reactor will require periodic refueling

Refueling requires temporary on-site storage of:

- New, incoming fuel
- Used fuel

Storage plan

- Is fully secure and in line with industry practice (fuel is transferred from the reactor's core barrel to a fueling machine to dry storage casks)
- Fuel is housed within reactor services building and maintenance enclosure
- Continuing to develop a longer-term storage plan with industry partners to integrate with existing storage facilities

MMR design updates - fuel

Changing the fuel design and how the fuel is cooled enables the uprating without significantly changing the design or size of the reactor core

The changes result in:

- A reduction of thermal stresses in the fuel at a higher power density
- Better transfer of heat
- Higher power from the fuel with a similar volume
- Lower fuel temperature to achieve the same thermal operating temperatures

Solid fuel

pellet

Annular fuel pellet

Environmental Assessment and Licensing

Licensing - overview

Regulated by: Canadian Nuclear Safety Commission (CNSC)

Our project: Class I facility

5 licences:

- Site preparation
- Construction
- Operating
- Decommissioning
- Abandonment

Environmental assessment:

Reviews entire lifecycle of the project

Stakeholder engagement:

Required throughout project lifecycle; critical for project success

Licensing – current status

2019 🗸

Preliminary application for a Licence to Prepare Site (LTPS) submitted to CNSC

Environmental assessment commenced

2021 🗸

Portions of Management System submitted to CNSC (includes processes, procedures and controls)

June, 2023 🗸

Licence to Prepare Site application - Part 1 submitted to CNSC (available on GFP's website for public review)

EA underway

- The project is subject to an EA, in accordance with the Canadian **Environmental Assessment Act** (CEAA 2012)
- It must demonstrate the project is not likely to cause significant adverse environmental effects, considering available mitigation measures

GFP has been conducting studies and preparing a draft **Environmental Impact** Statement (EIS) since 2021. New EA information will be available in 2024.

Licensing and EA - next steps

2024, Spring

Complete Licence to Prepare Site application submitted to CNSC

Environmental Impact Statement (EIS) submitted to CNSC

2024, ongoing until completion of process

CNSC application review process, including:

- · Technical review
- Public consultation
- Public comments on draft EIS
- GFP revisions of draft EIS
- CNSC final decision on the Licence to Prepare Site application
- Public comment

Public consultation and opportunities to comment occur at multiple stages throughout the CNSC review process. Details will be posted to www.cnsc-ccsn.gc.ca

Your feedback is important

To share your feedback virtually, scan the QR code or visit gfpcleanenergy.com and click "Share comments."

